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THE PROBLEM OF WAVES OF DISCRETE SPECTRUM IN SHEAR FLOWS WITH 
SIGN - CONSTANT CURVATURE OF THE PROFILE* 

M.A. MIRONOV and I.A. SAZONOV 

A Fourier transformation method is used to solve the Cauchy problem for 
a plane-parallel flow with a velocity profile with unchanging sign of 
the curvature. It is shown that in the case of an ideal fluid a 
perturbation forms (a residue at the pole of the integrand in the 
inverse Fourier transformation) in spite of the impossibility of the 
existence of a discrete eigenmode (Rayleigh's theorem), resembling a 
decaying eigenmode. This differs from the eigenmode in the fact that 
the residue in the critical layer is discontinuous. The total 
perturbation field appears to be continuous, since the discontinuity of 
the residue is compensated by a discontinuity in another component of 
the total field (non-harmonic with respect to time), namely by the 
integral along the edges of the cut. When the viscosity of the medium 
is taken into account, the pole of the integrand is displaced by a small 
amount proportional to y'/' (v is the kinematic viscosity), the residue 
at the pole becomes a continuous function and corresponds to the 
decaying eigenmode for the Orr-Sommerfeld equation. When the viscous 
times are proportional to +I*, the differences between the solutions 
of the Cauchy problem for the viscous and inviscid media become small. 

According to Rayleigh's theorem, when the plane-parallel flow of an ideal fluid is such 
that the curvature of the velocity profile does not change its sign, no decaying or increasing 
eigenmodes are possible /l/. Neutral modes may exist in the flows with a curvature of constant 
sign only in the case when the curvature of the profile in the critical layer is equal to zero 
(such modes are easily computed in, e.g., piecewise-linear profiles /2/). When the curvature 
of the profile changes within the critical layer by an arbitrarily small amount, the mode 
either becomes increasing when the curvature of the whole profile.becomes sign-alternating, or 
else it must, according to Rayleigh's theorem, vanish if the curvature remains sign-constant. 
Numerical solutions of the flows, of a viscous fluid with sign-constant profile curvature (in 
particular of the boundary layer), yield decaying modes which include modes whose phase velocity 
and decay coefficient cease to depend on the viscosity at large Reynolds numbers /3/, i.e. 
when the viscosity becomes vanishingly small the decaying modes which are forbidden by 
Rayleigh's theorem, remain present in the actual fluids with sign-constant curvature of the 
profile. 

The problem of the disappearance of the eigenmodes in an ideal fluid for small 
deformations of the velocity profile is discussed below, together with the problem of the 
applicability of Rayleigh's theorem to actual fluids. Only the discrete-spectrum modes are 
dealt with (shear flows of an ideal fluid always contain, in addition to discrete spectrum 
modes, continuous spectrum mode which satisfy Rayleigh's equation in the generalized sense; 
the modes are neutral in principle, and their existence does not contradict Rayleigh's theorem 
/4-7/). 

1. The eigenmode (wave) in plane-parallel flow with velocity profile U(z) represents a 
harmonic perturbation satisfying Rayleigh's equation and boundary conditions (we shall consider, 
for simplicity, flows unbounded in z, since this does not affect the problems discussed here; 
for such flows the role of the boundary conditions will be played by the conditions for the 
perturbations to decay at infinity) 

(o/k - U) ($ - k2rp) + U"cp = 0 (1.1) 
cp-+o, IZI--f~ (1.2) 

basicR;;=w q, (~9 2, t) = cp Z eXp(iks - iot) iS a small perturbation in the stream function of the ( ) 

k is the horizontal wave number, and qi = acplaz. 
According to Rayleigh's theorem /l/ there are no modes with complex o if the function U" 

is sign-constant. The theorem yields a result which seems strange at first sight. Let us 
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consider the waves in a profile close to a piecewise-linear profile, with a single break: 

1 Y,Z + MW2 f 0 (4, 
U(z) = 1 

z > 0 
. yzz + qW/2 + 0 (4, z < 0 

YI = u’ (+O), yz = U’ (-0), u = U”l(ky,) 

(1.3) 

Here YU YO are the flow velocity gradients above and below the break (suppose Y1> Yl> 

O), c is a small dimensionless parameter characterizing the curvature of the profile outside 
the break, and the break corresponds to a rapid, practically 

z 
instantaneous change in the flow velocity gradient over a 
very small scale, smaller than all other scales encountered 

b in this paper. The family of profiles described by Eq.(1.3) 
is shown in Fig.la) u = OX b) u>O, and c) u<O. 

If the profile has zero curvature (u=O), then a unique 
discrete spectrum mode will exist in the flow (1.3): 

(to 
law 

its 
the 

'p = exp (-k 1 z 1 + ikx - io,t) (1.4) 

be specific we shall write k> 0) with the dispersion 

00 = (n - Y&/2 (1.5) 

Although the curvature of the profile does not change 
sign when u = 0: U" - (yl = y2)6 (z) and the existence of 
wave (1.4), (1.5) does not contradict Rayleigh's theorem 

C’llb ’ since it is neutral and the profile has zero curvature within 
a its critical layer z, = o/(ky,) . 

When u<o, the curvature of the profile (1.3) is 
Fig.1 sign-alternating,and the eigenmode in such a profile becomes 

increasing, and can be found using the method of successive 
approximations, in the form of expansion in powers of u. In particular, for the imaginary 
part of the frequency this method gives a linear dependence on o for small u (see Sect-l). 

When o>o, the curvature of the profile (1.3) is sign-constant, and according to 
Rayleigh's theorem it has no eigenmodes. 

Thus when u < 0 (an unstable profile), an increasing mode will exist and its increment 
will decrease as the curvature decreases. The mode become neutral on changing to a piecewise- 
linear profile, and will vanish when the curvature changes further. Such a behaviour of the 
mode for small variations of the parameter u is somewhat unusual, as if we had an oscillator 
in which, in the case of negative and zero friction, a corresponding increasing or neutral 
eigenoscillation existed and vanished on changing to an arbitrarily small positive value of 
the friction. 

The determination of the eigenmodesin shear flows is related to the number of problems 
dealing with modes in laminar waveguides, which have been studied in detail in acoustics and 
radiophysics, and which reduce to solving equations of the type g"+f(~,a)cp=o with homo- 
geneous boundary conditions (for (1.1) we have f= U"l(olt- U)- kz). In the initial problems of 
acoustic or electromagnetic waveguides the eigenmodes represent the residues at the poles of 
the solution spectrum /6, B/. Thus the disappearance of a mode might lead us to expect that 
the pole in the solution spectrum of the initial problem will vanish when o>o. Below, we 
shall show that in shear flows the residue at the pole and the mode are not, in general, 
equivalent, and the disappearance of the mode does not imply the disappearance of the pole. 

2. The reason for the disappearance of the mode when u>O will become completely 
clear when the initial problem is solved. Let the velocity field be identical with (1.4) at 
the instant t =o. At subsequent instants the field will satisfy the conditions (1.2) and 
the non-stationary Rayleigh equation, differing from (1.1) in that o is replaced by is/at. To 
simplify the solution it will be convenient to replace the Cauchy problem by the equivalent 
problem with a source: let there be no perturbation at t< 0, and let a vertical external 
force act on the fluid at the instant t = 0, at the break in the profile 

fz = 2Z2 6 (z) 6 (t) ckr (2.1) 

In this case we can seek the solution separately in the upper region (z> 0) and the 
lower region (z< 0) where it is easier to obtain the particular solutions of Rayleigh's 
equation. We shall, however, demand that "matching" conditions hold at the break (z = 0), that 
cp is continuous, and that there is a pressure jump taking (2.1) into account 

[plr_, = 2ik-a6 (t) eqkx, p = (ik-‘alat - u) ‘p’ + U’cp (2.2) 

Here [ 1~~ denotes a jump in the value of the function in the layer z = h, and p is 
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the pressure. 
We shall use the method of one-sided Fourier transformation in time (/g/, p.325) 

CD (2, 0) eitx = S cp (5, 2, t) eiot dt 
” 

The spectrum of the stream function @(z, o) satisfies, in the upper 
the Rayleigh Eq.(l.l), conditions (1.2) and the "matching" conditions for 

[@I,, = 0, [(o/k - U)Q' + U'0,1,=0 = -2i 

We find the particular solutions of (1.1) in the upper region @+I,z 

@-I,, using the method of successive approximations and expansions in a 

Q (0) 
+1,e = %,z + @ !i'., + * * *t @-I,2 = @I,2 (O) +d’:,,+... 
C@\ = eSk2, Q(l) +1, a = f: ‘l,o4$F [& 2 (kz - o/y,)] 

and lower region, 
the spectra 

(2.3) 

and lower region 

small parameter u 

(2.4) 

"Matching" #+I with @_, and taking into account (2.3), we obtain the spectrum of 

the solution and write, using the inverse Fourier transformation, the solution of the problem 
in integral form 

w (co) = 00 + ll,ok-’ (@+l’/Q+l - ~_r’/~_z) ;21 

00 - 61 f '/,oo [exp (-20/y,) Ei(2o/y,) - 

yIy2-' exp (20/y,) Ei (-2441 + 0 (02) 

When z<o, we must replace @,I (z, ~)/@+~(0, 0) by %(z, w)/CP_~(O, O) in (2.5). Hence- 

forth, we shall only consider the region z>O. 

Imh 

.-. - 

D 

, 

t 

a 

Fig.2 

The contour I' passes above all singularities of the 
integrand. The singularities are as follows: the logarithmic 
branch point o = 0 governed by the functions @+,(O, o) and 

W(w); the logarithmic branch point o = w: governed by 
the function @+l(z, o) (0, = kU (z) = ky,z i- o (a)), and a pole 

r 0=0p governed by the zero of the function W(O). The 
-.-.-.-. integrand in (2.5) is single-valued in the plane with cuts 

made from the branch points vertically downwards (Fig.2). We 
must choose in this plane the branches of the functions Ei 
and In such that they take real values for negative andposi- 
tive values of their arguments, respectively. When the 
branches are chosen in this manner, perturbation (2.5) will 
be identical with perturbation (1.4) at the instant t = 0. 

Taking the choice of branches into account, we find the 
pole op using the method of successive approximations 

cop = w, + iok; 0, = o,, + '/,a~, i- [exp (--2qJy,) Re Ei (20,/y,)- (2.6) 
yIy2-' exp (20,/y,) Ei (-2~oiyl)l + 0 (0’) 

oi = -unbox exp (-20,/y,) + 0 (u") 

When t> 0, the integrand in (2.5) satisfies the conditions of Jordan's lemma in the 
lower half-plane. Let us deform the initial contour in the downward direction. We shall find 
that it will "hook" onto the singularities of the integrand and will split into three parts, 
namely a contour Fp, going around the pole, a contour lYO, going around the zero branch point 
along the cut edges, and a contour Fi, going around the branch point oz along the cut edges 
(Fig.2). We shall denote the results of integration along each contour by Q,, q,,, qr respectively. 

We obtain the function 'pp using the theorem of residues, and write it in unique form, 
taking into account the choice of the branches (z> 0) 

'pp = exp (-kz + ikx - io,t) (1 + l/gs [Re F (2kz - ~o,/Y,) - (2.7) 
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Y~Y~-’ exp C‘h.d~,) Ei (---2d~~) - 
2ni [exp (2kz - 20,/y,) - 11 0 (2, - Z)l + 0 (0)) 

The perturbation q$ is harmonic in t and X, increases when c<O, and decreases when 
Is > 0. 

When c<O, the perturbation 'pp satisfies the Rayleigh equation and conditions (1.2), 
and represents an increasing eigenmode. It can be excited in pure form, e.g. by a vertical 
volume force 

f, = -ik-* ((pp” - k%p,) 6 (t) 

When o>O, the pole lies below the "mobile" branch point oz (it varies its position 
as 2 varies). When the point z passes through the critical layer z,, a cut made from this 
branch point will intersect the pole, and the pole will be found at the other edge of the cut. 
Correspondingly, the residue of this pole will undergo a jump at the point z = z,. The function 
m, has a break within the critical layer in terms of first order of smallness in c. and a 

.r 

discontinuity in terms of second order of smallness in c: 

[(pp'lzEr, = exp (-kz, + iks - io,t) ukni 

[(P&=~, = -exp (-kz, + iks - io,t) oo~niy,-’ 

When c>O, the perturbation 'pP will not satisfy Rayleigh's 
point (within the critical layer). Therefore, it is not an eigenmode 

(2.8) 

equation at only one 
and cannot be excited 

in pure form without the application of external, constantly acting forces. 
When n>O, the non-analyticity of the function 'pP in the critical layer is compensated 

by the non-analyticity of the function (pz, so that their sum is analytic. We cannot calculate 
qz and 'pO in explicit form, but we can show that for short times they are of the order of u, 
and at t> yl-' their asymptotic form decreases as a power series (z > 0): 

uy,‘exp (- kz + ikx) [it-’ exp (-- ikztp,) + 

CPZ = gelip(-io,t)Ei(igt)], IgtI<l 

atPy;'g-'exp(- kz + ikzty, + ikx), 1 qt 1 >I 
g = w, - ylkz = ylk (zc - z) 

‘pO = --2~tPy,-'y~-~ exp (-kz + ikx) 

(2.9) 

When calculating the asymptotic form (2.9) we used the fact that the integrand (2.5) 
decreases rapidly from the branch points along the cuts at t > y,-'. Immediately after the 
force (2.1) has begun to act, the perturbations (pz and 'p,, will be small compared with 'pP, 
but they will decay for u> 0 more slowly than 'pP, and will be of the same order as qP when 

; 4lpyI~. When t> t0, the whole field will be largely determined by the perturbations 
. Thus when t<t,, 

time dependence exp (-iOpt). 
the total perturbation will differ little from harmonic with a 

When u>O and t> to, it will decrease as a power series. 
An analogous relationship for the decay of the perturbations not with time but along the 
horizontal coordinate was obtained in /lo, ll/. 

We note that the separation into harmonic and non-harmonic part is not unique. BY 
changing the direction of the cut (o:, -iw), we also change the harmonic and non-harmonic 
part of the solution (but not their sum). In particular, the discontinuity of the residue z, 
will be displaced (when the cut is purely vertical, the discontinuity will satisfy the con- 
dition U(z,)= o,k-I). The closer the cut approaches the vertical line, the faster the 
integrand in (2.5) will decrease along the cut edges, and the asymptotic form (2.9) will be 
established for the non-harmonic part more quickly. 

The results obtained can be applied to profiles of more general form, such as boundary 
layers, jets and wakes (although in these flows the determination of the poles is more difficult 
than in the case of the model profile (1.3)). Indeed, in the case of any real profile the 
perturbation spectrum will contain a "mobile" branch point (which will move along the axis Reo 
as z changes). The presence of this point is related to a particular feature of Rayleigh's 
equation, namely the fact that the coefficient of the principal derivative vanishes. The 
particular behaviour of the spectrum at this point is the same for all flow profiles: L"' (w - 
Oz) In (w -‘o*). (oz is the frequency for which the layer with coordinate z is critical, i.e. 
o,k-' = U (2)). A cut from this point vertically downwards can intersect, at some C, the poles 
of the spectrum lying in the lower half-plane o, and for these values of z the residues will 
have discontinuous and hence will not be eigenmodes (see the footnote in /12/ 1. Thus Rayleigh's 
theorem holds for the modes, but not for the poles. 

Nevertheless, if the curvature of the profile is small in the critical layer, the residue 
will "resemble" a weakly decaying mode since it depends harmonically on time and remains a 



dominant exponent of total perturbation a long time after the excitation (t -klU'(z,)). It should 

be expected that, in many waveguide problems (dealing with excitation by a force that is 

harmonic in time, with non-linear interactions, etc.), we can neglect the fact that the total 
perturbation differs from the residue, and regard the residue as a "fully valuable" mode. 

3. Let us now solve the analogous problem for a viscous fluid, in which the force (2.1) 
acts on a viscous flow with profile (1.3). As in the case of an ideal fluid, we will use a 
Fourier transformation with respect to time. The spectrum of the solution @'(z, o) will 
satisfy, in each region z>O and z<o, the Orr-Sommerfeld equation 

[(o/k - U) (P/aZ* - ka)+ U" - ivk-1 (P/aza - @*I @ = 0 (3.1) 

conditions (1.2), and the "matching" conditions at the break in the profile. The latter con- 
ditions, in case of a viscous fluid, take the form 

[(D”]zzo= [+Dy]z36= [-&'Dv]2_=0, [ikU’+ v$]r_@V=2k (3.2) 

and follow from the conditions of continuity of both the velocity components and the vorticity, 
and from the conditions of a jump (2.2) in the pressure. 

In the region z>O Eq.(3.1) has four particular solutions. We shall call two of these 
solutions the "inviscid" solutions @):1,*, and the other two the "viscous" solutions CD&,. 

None of these solutions contains a branch point, and, unlike in the case of an ideal fluid, 
they are all analytic over the whole plane o. 

We shall write the asymptotic form of the inviscid solution for 16, I>R-‘l*, where 
R = y,lvk% is the Reynolds number and 6, = (o - w,)/y,, in the form of the sum of the 
inviscid and viscous terms 

@~,z(o> 2) = @+t,,(w, 2) + A@':l,z(m, z) (3.3) 

Here @‘+I,~ are.particular solutions of the Rayleigh equation described by expression 

(2.4), and the asymptotic form ACQ8 depends on the argument 6,: 

Here s, is a region 

Fourier transformation wi 
find the solutions Q+,,v 

'/&R-'[2 exp (- 26,)Ei(26,) + 6ia - &'I + O(aR-a), C_,J @ S, 

- '/z@D,,v,,4, 0 ES, 
(3.4) 

in which -6/,n < arg 8: < -1/ai% This expression was obtained by a 

h respect to the coordinate z. In the region 16, 1 ,(A-vs we can 
using the method of small perturbations, and the solutions will 

be expressed in terms of the integrals of Hankel function of order llS. In what follows, we 
shall only need an estimate of the viscous corrections in this region 

uq1,a(O, z) = q:(Z) + O(oR-'I*) (3.5) 
The asymptotic form of the viscous solutions for 16, I>R-‘la was studied using the 

method of standard equations /13/, and can be written in the form 

a:,,4 Y R-%X-“” exp (f R’l’k 5 Q"' dz) (1 T s iR-‘l’ (- i&)-‘/s + 0 (R-I)), (3.6) 

Q (2) = i (kU - o)/yl + R-1 

The solution (D:, increases as 16, I-+ 00 in the sector -6/,n < arg 6, (Van, and the 

solution Q:, in the sector -8/,n < arg6,< -Ii&. Thus the particular solutions @)+vl,z 

increase as ~6,~+00 in the sector S,. 
In the lower region z<O the particular solutions of Eq.(3.l).behave in exactly the 

same way, so we shall not write them out separately. 
Using the expressions obtained for the asymptotic forms of the particular solutions, we 

shall solve the boundary value problem (3.11, (3.2), (1.2); we obtain 

*,v = @:I (1 + 0 (4 + 0 (R-l)) (0 - opy, 0 3 s, 
(@,:I + %0(-I-Q (I + 0 (a) + 0 (R-1)) (0 - opy, 0 .F s, (3.7) 

oPv = oP - (1 + i) 1/2vka/m, (3.8) 
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Fig.3 

Here S,, is a region in which --6/Bn < arg 0 < --ll,n, oP is a pole for the problem of the 
flow of an ideal fluid (see (2.6)). The spectrum of z<O in the region x<O behaves 
in the same way, so again we shall not write it out separately. 

We shall write the solution of the initial Cauchy problem in the form of an inverse 
Fourier transformation: 

(py(5, z, t) = (2n)-le'rr S CD,'(z, 0~)e-'~'~ do 
r 

(3.9) 

When the fluid is viscous, the integrand does not satisfy the conditions of Jordan's 
lemma in the lower half-plane o at t>o. It increases as exp (V3 1 o 1": Re'll) as 10 I-+00 
in the shaded regions in Fig.3. Formulas (3.4), (3.5) and (3.7) show that outside the sectors 
S0 and S, the viscosity corrections contribute little towards the spectrum cPV. 

Using representation (3.3), we shall split the field into two terms 

cp = (h-1 eikx S @+l (1 + 0 (u) + 0 (R--l)) (w - wpv)-l e&Of do 
r 

AC+P = (2n)-r'e'kxS 4@y1(1 + O(o) + O(RP))(o - q,v)-re-i"t do 
r 

The integral (3.10) is analogous to the integral (2.5) which was discussed above. It 
yields a sum of fields qP, cp,, cpO, obtained for the ideal fluid, but the frequency of the 
harmonic part of the perturbation will be changed only slightly, according to (3.8). 

Let us obtain an estimate for the integral (3.11). To do this we transform the initial 
contour into the contour rOzr which passes along the outer periphery of the sectors So and S, 
(Fig.3).Integration over the small neighbourhoods of the points.w = 0 and 61 = 01, such that IO/ 
y1 I& RA'*andI 6, I&RR-"* respectively yields, in accordance with estimate (3.5), a quantity of 
the order of oR-%.The integration over the remaining parts of the contour can be carried out 
approximately, and this will also yield a quantity of the order of UK-‘ia, provided that Ikz I>> 
R-'la.Thus,.taking into aCCOUnt the viscosity will lead everywheredexcept in the neighbourhoodof 
the break in the flow velocity profile, to the appearance of terms of the order of oR-'fs. When 
c > R-“3, the terms will make a substantial contribution towards the general field only at 
the times t, = yl~~&'i~ = y-'/z (kU')-'ia, at which 'Pa, 'pz - #JR-'/, (analogous estimates were obtained 
in /6, 7/). 

The asymptotic behaviour of the solution of the problem can be studied at t>tt, using 
the saddle-point method. The integrand in (3.9) has two saddle points w1 and 0%. When t > tv, 
we obtain for them the following approximate expressions: o1 = -it2y,3R-1, w2 = w, + wl. Within 
these times the points in question will be displaced into the regions -1m w,.,y,~' > R-‘/s, 
where we can use the asymptotic approximations for the particular solutions. 

Let us transform the initial contour into the saddle contours rl and I', (Fig.3). If, 
in the course of deformation the contour intersects the pole wP, then we must, as usual, sup- 
plement the results of integrating over the saddle contours, with a residue at that pole. The 
saddle-point method yields 

(pv - exp (-Phv3) (3.12) 

Thus the character of decay of the perturbations changes over the times t,, from a power, 
to a exponential form (-t?xp (--t%“),. The first change in the form of decay of the perturba- 
tion from exponential (-exp (wit)) to power (-t-“) occurs at the time t,. 

At the time t, = t,giqn-‘f* = .‘lzy,-‘lek-‘v-‘fz the form of the perturbation decay changes for the 



third time to exponential (-exp(o$)). Within these intervals the saddle points lie 
the pole, while the residue at the pole just as at the times t<&, becomes the 
important part of the section 

@,:l(opv, z)exp(ikz - io,y, kz > K” 
‘PP v 

[@v+l (%VI z) -I- l/*aiDV,, (op”, z)] oxp (ikt - io,“t), kz < R-“” 
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below 
most 

(3.13) 

A threefold change in the asymptotic behaviour is possible only in the case when the ef- 
fects connected with the curvature are "stronger" than the effects of viscosity, i.e., when 
(I > R-‘I..’ Otherwise ty<&, and at t - tv we have the transition from 'pp to 'ppv. 

The perturbation 'ppv is formally identical with 'pp apart from terms of the order of 
CR-l, apart from those 2 for which the pole falls within the sector Sz. We have near the 
critical layer k 1 z - z, 1 < j%~~y,-’ and the break in velocity profile 1 kz 1 & R-‘/a , the 
viscosity makes a significant contribution towards 'ppy. The perturbation 'ppv strongly 
oscillates in 2, and the frequency and amplitude of the oscillations increase as the viscosity 
decreases. 

The perturbation 'ppv satisfies the Orr-Sommerfiend equation for all s, as well as the 
conditions (1.21, and represents an eigenmode of viscous flow. When a> R-“a, its dispersion 
and decay coefficient depend slightly on the viscosity (see (3.8)). The dispersion and form 
of this mode canbe calculated approximaely (except in the neighbourhood of the critical layer), 
using the non-viscous approach discussed in Sect.2. 

In conclusion we note that in a viscous fluid, unlike an ideal fluid, the profiles u (2) 
cannot be arbitrary. In particular, the profile (1.3) must change with time so that the break 
in the velocity profile will be smoothed out. The change in the curvature of the profile 
AU" (z, t) is described by an equation which follows from the Navier-Stokes equations dAlJ”ldt = 
va=Au*iaz=. From the point of view of the phenomena discussed here, it is important that such- 
a change be small in the neighbourhood of the critical layer: I AU” hc. t) I < cW. Computations 
show that the latter inequality breaks down at times of the order of t,- (y,/yI- 1)2Rl(y, Ina-'), 
which are much longer than t, - R”Vy,. 

To authors thank G-1. Barenblatt and S.A. Rybak for their interest shown and for useful 
suggestions. 
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